

## FABRICATION OF DYE SENSITIZED SOLAR CELL

## ARUN KUMAR JOGI<sup>1</sup> & SREEDHAR D<sup>2</sup>

Sreenidhi Institute of Science and Technology, Hyderabad, Telangana, India

## ABSTRACT

Dye-sensitized solar cells combine the unique properties of both inorganic and organic compounds. They are potential alternatives for present day p-n junction photovoltaic devices. In this work fabrication of a dye-sensitized solar cell using Black Berry fruit extract as a natural organic dye and TiO<sub>2</sub> semiconductor nanoparticles synthesized through solgel method has been reported. Graphite was used as a counter electrode and potassium iodide was used as a charge carrier in the cell. Light form the sun excites the electrons of the organic dye that is coordinated to TiO<sub>2</sub> and the electrons are then injected into TiO<sub>2</sub> nanocrystals. The electrons then flow from TiO<sub>2</sub> coated electrode, through the load and back to the Graphite counter electrode. The counter electrode then donates electrons to the dye completing the circuit. SEM images of synthesized TiO<sub>2</sub> nanoparticles had an average size of 65 nm. An efficiency of 33.45% has been achieved by using Black Berry fruit extract as the dye.

KEYWORDS: Solar Cell, DSSC, Sol Gel Method, Dye of Black Berry, Carbon Electrode, SEM, EDS, Solar Spectrum